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The unified description

Suppose we have
Generic actions describing gravity
(gµν) coupled to

Scalar (φ)
Vector (Aµ)
Tensor (hµν)

Each of them have

One scalar propagating d.o.f.
Invariant under linear
diffeomorphisms
Maximum two derivatives
Quadratic in perturbations
(SVT decomposition)

�



�
	Is it possible to write down a single action describing

the linear phenomenology of all of them at once?

I don’t think so
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Scalar-Tensor Theories
EFT of Dark Energy gives us the action!
If up to second derivatives we have linearized Horndeski!

�� ��Expansion History: H (t) One constant: Ωm0

Kineticity: αK

standard perfect-fluid structures
not present in archetypal
“modified gravity” models

Braiding: αB

mixes the kinetic terms of the
scalar and metric
responsible for all the new
scale-dependence

Planck mass run-rate: αM

d
dt M2

∗ . M2
∗ effective Planck mass

anisotropic stress

Tensor speed excess: αT

determines the speed of
gravitational waves
anisotropic stress

[Cheung, et al. (2008)]
[Gubitosi, et al. (2012)]
[Bloomfield, et al. (2012)]
[EB, Sawicki (2013)]
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A general method (to construct EFTs)

Choose the fields present in the theory and the gauge
symmetries to be satisfied

Write down an action with all possible quadratic
interactions between the fields, leading to a given
maximum number of derivatives of the fields in the
equations of motion
Find the Noether identities associated to the required
gauge symmetries, and impose the resulting constraints
on the quadratic action

You choose

Fields
Gauge symmetries
Number of derivatives

�� ��The rest is done by your PC!

[Lagos, et al. (2016)]
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Vector-Tensor Theories

Fields: gµν, Aµ plus matter ϕ

Gauge symmetries: linear diff invariance
Number of derivatives: 2

SVT Decomposition

ds2 = a2(τ)
[
− (1− δg00) dτ2 + 2δg0i dτdx i + δgijdx i dx j

]
δg00 = 2ψ

δg0i = ∂i B + Si

δgij = 2φδij + ∂i ∂jE + ∂i Fj + ∂jFi + hij

Aµ = (Ā + δA0, δAi ) with δA0 = α0 and δAi = ∂i α + αi

ϕ = ϕ̄ + δϕ
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Vector-Tensor Theories

Generic action

S =
∫

d3xdτ L
(

g00, g0i , gij , A0, Ai
)
+ Sm

Scalars with second derivatives

S =
∫

d3xdτ L
(

g00, g̈00, ∂jAi gij , Ȧi Ȧi , . . .
)
+ Sm

Quadratic Lagrangian

L(2) = Lg00g00δg2
00 + Lg00g̈00δg00δ̈g00 + LȦi Ȧi

˙δAi ˙δAi + . . .

Quadratic Lagrangian in SVT

L(2) = Lg00g00ψ2 + Lg00g̈00ψψ̈ + LȦi Ȧi
(∂i α̇∂i α̇ + α̇i α̇

i ) + . . .
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(∂i α̇∂i α̇ + α̇i α̇

i ) + . . .



Vector-Tensor Theories

Generic action

S =
∫

d3xdτ L
(

g00, g0i , gij , A0, Ai
)
+ Sm

Scalars with second derivatives

S =
∫

d3xdτ L
(

g00, g̈00, ∂jAi gij , Ȧi Ȧi , . . .
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Vector-Tensor Theories

L(2) = Lg00g00ψ2 + Lg00g̈00ψψ̈ + LȦi Ȧi
(∂i α̇∂i α̇ + α̇i α̇

i ) + . . . + 102terms

Linear coordinate transformation

δ̂gµν = δgµν + ∂αgµνξα + gµα∂νξα + ∂µgανξα

ˆδAµ = δAµ + ∂αAµξα + Aα∂µξα

ˆδϕ = δϕ + ∂α ϕξα

ξα = (π, ∂i ε + γi )

Invariance
ˆL(2) = L(2) ⇒

δ ˆL(2)
δπ

=
δ ˆL(2)

δε
=

δ ˆL(2)
δγi = 0 ⇒

Noether constraints

Lg00g00 = 0
LA0A0 + LA0Ȧ0

= 0

. . .

Minimal number of free functions of time
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Results and (Unification?)
Name Description ST VT

M2
∗ (αM) Planck Mass (run-rate) X X
αK Kineticity X X
αB Braiding X 0
αT Tensor speed excess X X
αC Conformal coupling excess 0 X
αD Small scales Dynamics 0 X
αV Vector mass mixing 0 X
αA Auxiliary friction 0 X
αS Vector Speed 0 X

Fields

Scalar-Tensor: 4xAuxiliary + 2xDynamical

Vector-Tensor:

5xAuxiliary + 2xDynamical
4xAuxiliary + 2xDynamical + Non-local operators�� ��Unification: OK only for practical purposes!
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Conclusions

Efficient (for computer-aided calculations) method to
calculate EFT theories given: fields, gauge symmetries and
number of derivatives

Phenomenological description of Vector-Tensor,
Einstein-Aether and Tensor-Tensor theories
It is possible to write a unified action, but just for practical
purposes

Thank you!
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